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Abstract- We perform numerical simulation of the discrete equilibrium solutions (equilibria) of Boltzmann equation on a N-layer loosely 
coupled hexagonal grid. The equilibria f of the Boltzmann equation can be expressed in terms of four parameters characterizing mass, 

),( yx -momenta and kinetic energy. The computation of discrete equilibria of the Boltzmann equation is effected by varying temperature 
and bulk-velocity. The temperature depends on the parameter µ  which is characterizing kinetic energy. The bulk-velocity depends on 
the parameter s'κ  which are characterizing ),( yx momenta and µ   as well.  
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——————————      —————————— 

1 INTRODUCTION                                                                     
n  recent years many researchers have proposed several 
numerical techniques to deal with the complexity of the 
Boltzmann collision operator. Simplified collision model 

have been introduced in rectangular grid in [H. Babovsky 
(2001); H. Babovsky (2002)], but there appears many artificial 
invariants which have to be eliminated by further techniques. 
Based on hexagonal grid in R2, [Andallah and Babosky (2003)] 
has introduced simplified collision model [as a discrete veloci-
ty model by T. Platkowski and R. Illner (1988)] and it has also 
established a kinetic theory for the discrete Boltzmann equa-
tion in which discrete equilibrium solutions (equilibria) of the 
Boltzmann equation is presented in terms of four parameters 
characterizing mass, momenta and kinetic energy. Later on 
[Andallah (2004)] has developed an automatic generation of 
the Boltzmann collision operator based on any larger size hax-
agonal grid and made some numerical simulation based on 
the grid in R2. [Andallah and Babovsky (2005)] has introduced 
a discrete model Boltzmann equation based on a loosely 
coupled hexagonal discretization of R2. This model satisfies 
the basic features of kinetic theory like conservation laws, H-
theorem; correct dimension of the null-space of the linearized 
collision operator etc. [Andallah, Babovsky and Khan (2006)] 
has developed the existence of two classes of regular hexagons 
in a loosely coupled hexagonal grid in R2. It is also noted that 
the model of the Boltzmann equation, based on only binary 
collision law, descretized on the loosely hexagonal grid in R2, 
provides two spurious invariants. [Andallah (2008)] has  
developed a generalized layer-wise construction of a  
loosely coupled N -layer hexagonal mesh for a discrete model 
Boltzmann equation. The work also described some properties 

of the N -layer loosely coupled hexagonal grid and identify 
the regular hexagons belonging to the mash in order to gener-
ate collision model for the Boltzmann equation. The discrete 
equilibrium solutions (equilibria) of the Boltzmann equation 
discretized on a generalize N -layer loosely coupled hexagonal 
grid is determined in [W. Z. Loskor and Andallah (2014)]. The 
equilibria f of the discrete Boltzmann equation can be ex-
pressed in terms of four parameters characterizing mass, 

),( yx -momenta and kinetic energy which are established by 
induction hypothesis. 
 

This research article performs numerical simulation of the 
discrete equilibrium solutions (equilibria) of Boltzmann equa-
tion on a N-layer loosely coupled hexagonal grid. It is also 
observe that the computation of discrete equilibria of the 
Boltzmann equation is effected by varying temperature and 
bulk-velocity. Besides these, this article produce numerical 
results showing how temperature depends on the parame-
ter µ , characterizing kinetic energy and bulk-velocity depends 
on the parameter s'κ , characterizing ),( yx momenta and µ  
as well. 
 
2 Boltzmann Equation 
The Boltzmann equation is a prominent representative of 
kinetic equations, describes the evolution of rarefied gases. 
The dynamics of the Boltzmann equation is given by a free 
flow step and a particle interactions step with the conservation 
of momentum and energy. The free flow step is modeled by 
the Liouville-equation and the particle interaction step is 
modeled by the Boltzmann collision operator. As a simple 
mathematical consequence of the Boltzmann equation 
is ( ) ( ) f]J[f,,,. =∇+∂ vxtfv xt , where )( vx,t,ff = , a density 
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function which depends on time, space and velocity and 
[ ] wf(w)]f(v))wf()v[f()w,(vff,J 1

1

dd

d d
ddk

R S
ηη −

−
−′′∫ ∫ −=  is the 

Boltzmann collision operator. 
 
3 N-LAYER LOOSELY COUPLED HEXAGONAL MESH 
In this section, a generalized layer-wise construction of a 
loosely coupled N-layer hexagonal mesh for a discrete velocity 
model Boltzmann equation is presented. Fig.1.1 shows a 72-
velocity model constructed by adding two-layer of hexagons 
centering to a center one and called two layers loosely coupled 
hexagonal mesh. Similarly by adding one more layer of regu-
lar basic hexagons, one can obtain a 3-layer hexagonal mesh 
and so on. In general we may call this a N-layer loosely 
coupled hexagonal mesh and the collision model based on the 
mesh can be called a N-layer hexagonal model which is a 
regular collision model so that it satisfies the basic kinetic fea-
tures and can be divided into six symmetric partitions (Fig.1). 

 
Fig. 1:   72-velocity Model as a Two-Layer Model. 

 
4 EQUILIBRIA FOR A N -LAYER MODEL 
Strictly positive density vectors ( ) )13(2)23(

0
+++

==
NN

iiff  is said 
to be the equilibrium solutions (equilibria) if  0,J[ ≡f]f  for a 

N -layer hexagonal model. The thi  equilibrium of the thn  

layer is 
),(2

2
),(1

1
),(0

0
),(   ),(

ininininmzinf
κκκ

κκκµ +++= ;  where 

0 , , , 210 >+++ κκκz  are satisfying arbitrary quantities 

1210 =+−+ κκκ .  
The equilibria at the six nodes of 0-st layer (i.e. at the 

nodes of the central basic hexagon) are given by 

( ) ( )T210210543210 ,,,,,.,,,,, −−−+++= κκκκκκzffffff . 
For a 3-layer model, presents the equilibria for the nodes of the 
partition as 
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Where z  parameterizes mass, ( ++ 20 ,κκ ) characterize non-

vanishing bulk-velocity, µ  responsible kinetic energy. 

Fig. 2 shows each thn layer of a partition has )13( +n  nodes and 
the node numbering is from the top to bottom of at each layer. 
These values of equilibria for a partition of a N -layer model 
are generalize as in the proposition below. 

 
Fig. 2:   A partition of a Six-Layer Model. 

 

4.1 Proposition 
For a partition (of a N -layer model) corresponding to the 
triple ),,.( 210 +++ κκκz , the equilibria is described in-terms of 

the parameters +++ 210 ,,, κκκz  as in the following steps. 
 

In the case of odd layer:     
(a) For kinetic energy µ : 

Corresponding to the values of th)13( +m  
2

1,,0 −= nm  ; 

th)23( +m  
2

3,,0 −= nm  , and th)33( +m   
2

3,,0 −= nm   nodes 

of thn  layer, they obtained values by the th)13( +m , th)23( +m , 

and th)33( +m  nodes of the th)2( −n  layer with an incre-

ment 66 −nµ , 36 −nµ , and 36 −nµ  respectively. The value of 

( )th
2

13 +n node of htn  layer, it obtained value by the 

( )th
2

13 −n node of htn  layer with an increment n2µ . The value 

of  ( )th
2

13 −n  node of htn  layer, it obtained value by the 

( )th
2

13 −n  node of htn  layer with an increment nµ . The rest 

values of ( )th
2

53 += ni node to ( )th13 += ni  node of htn  layer, 

they obtained values by the ( )th33 in −+  node of htn  layer 
respectively. 
 

(b)  For non-vanishing bulk velocity +0κ : 

Corresponding to the values of 1st node to 3rd node of htn  
layer, they obtained values by the 1st node to 3rd node of the 
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( )th2−n  layer with an increment 2
0+κ . The value of ( )th4=i  

node to 
th

2
33 




 += ni node of htn  layer, they obtained value by 

the th)3( −i  node of htn  layer with decrease 2
0
−
+κ  . The rest 

values of ( )th
2

53 +n  node to th)13( +n  node of htn  layer, their 

values are 0
0+κ . 

 

(c) For non-vanishing bulk velocity +1κ : 

Corresponding to the values of 1st node to 3rd node of htn  
layer, they obtained values by the 1st node to 3rd node of the  

layer with an increment 2
1+κ . The value of ( )th4=i node to 

th

2
33 




 += ni  node of htn  layer, they obtained value by the 

th)3( −i  node of htn  layer with an increment 2
1+κ .  The rest 

values of ( )th
2

53 +n  node to h)13( tn +  node of htn  layer, 

they obtained values by the th)33( in −+  node of htn  layer 
respectively. 
 

(d) For non-vanishing bulk velocity +2κ : 

The values of 1st node to ( )th
2

33 +n  node of htn  layer, their 

values are 0
2+κ . The values of 

( )th
2

53 +n  node to ( )th
2

73 +n node of htn  layer, their values 

are 1
2+κ . The rest values of ( )th

2
93 += ni node to 

( )th13 += ni  node of htn  layer, they obtained values by the 
th)3( −i  node of htn  layer with an increment 2

2+κ . 
 
In the case of even layer:     
(a) For kinetic energy µ : 

Corresponding to the values of th)13( +m  
2

2,,0 −= nm  , 

th)23( +m  
2

2,,0 −= nm  , and th)33( +m  
2

4,,0 −= nm   

nodes of htn  layer, they obtained values by the th)13( +m , 
th)23( +m , and th)33( +m nodes of the ( )th2−n  layer with an 

increment 36 −nµ , 66 −nµ , and 36 −nµ  respectively. The value 

of ( )th
2

3n  node of htn  layer, it obtained value by the 

( )th
2

23 −n  node of htn  layer with an increment n2µ  . The value 

of  
th

2
23 




 +n  node of htn  layer, it obtained value by the 

( )th
2

3n  node of htn  layer with an increment nµ . The rest val-

ues of 
th

2
43 




 += ni  node to ( )th13 += ni  node of htn  layer, 

they obtained values by the th)23( in −+  node of htn  layer 
respectively. 
 

(b) For non-vanishing bulk velocity +0κ : 
Corresponding to the values of 1st node to 3rd node of 

thn layer, they obtained values by the 1st node to 3rd node of 

the ( )th2−n  layer with an increment 2
0+κ . The value of 

( )th4=i  node to 
th

2
23 




 += ni  node of htn  layer, they ob-

tained value by the th)3( −i  node of htn  layer with a decrease  
2

0
−
+κ  . The rest values of ( )th

2
43 +n  node to th)( 13 +n  node of 

htn  layer, their values are 0
0+κ . 

 

(c)  For non-vanishing bulk velocity +1κ : 
Corresponding to the values of 1st node to 3rd node of 

thn layer, they obtained values by the 1st node to 3rd node of 

the ( )th2−n  layer with an increment 2
1+κ . The value of 

( )th4=i  node to 
th

2
23 




 += ni  node of htn  layer, they ob-

tained value by the th)3( −i  node of htn  layer with an incre-

ment 2
1+κ .  The rest values of ( )th

2
43 += ni node to  

( )th)13( += ni  node of htn  layer, they obtained values by the 
th)23( in −+  node of htn  layer respectively. 

 

(d)  For non-vanishing bulk velocity +2κ : 

The values of 1st node to ( )th
2

23 +n  node of htn  layer, their 

values are 0
2+κ . The values of ( )th

2
43 +n  node to ( )th

2
63 +n   

node of htn  layer, their values are 1
2+κ . The restvalues of 

( )th
2

83 += ni  node to ( )th13 += ni node of htn  layer, they 

obtained values by the th)3( −i  node of htn  layer with an in-

crement 2
2+κ . The equilibria for other partitions as well as for 
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the complete N -layer model is determine by symmetry. 
Now if +1κ  is substitute by  ++ 20 κκ  in equation (1.1) then it 
has the following statement. 
 
4.2 Theorem 

Let eNN ,0  denote respectively the set of odd and even natural 

numbers. The thi equilibria in the thn  layer of the partition cor-
responding to the triple ),,( 210 +++ κκκ   is given by 

),(2
2

),(0
0

),(    ),(
inininmzinf

κκ
κκµ ++= ; Nn ,,0 = and 13,,1 += ni                          

                                                                                         (1.2) 
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   In the case of  eNn ∈   and  
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Proof:  The proof of the theorem is at 5.2 of [Loskor (2012)]. 
 
5 COMPUTATION OF EQUILIBRIUM 

Here the discrete equilibria are computed, which are described 

by the parameters ++ 20 , , κκµz,  characterizing respectively 
mass, temperature, and bulk-velocity. It is evident that 

0   ,0   ,0 ><=xv  according as 1    ,1   ,1120 ><=+=++ κκκ ;  

0   ,0   ,0 ><=yv  according as 0    ,0   ,020 ><=− ++ κκ  and 

+

+
+++ −=−

0

1
020 κ

κ
κκκ .                                  (1.3) 

Now the discrete equlibria ε∈hf~  given by the previous 
theorem for the case of zero bulk-velocity on a 4-layer grid  
(of 210 grid points) with discretization parameter 1=h  
 for three different value of  95.0  ,55.0   ,25.0=µ  is  
computed and the corresponding Maxwellian given by 

2  ,
2

)vv(
exp

)2(

~ 2

2
=

−−
= 








d

TT
f d

π

ρ ,where ∑=
i

f h
i

~:ρ  is the 

mass density, h
ii f

i
~v1v ∑= 







ρ  is defined as the bulk veloci-

ty, h
ii f

i
T ~)v(v2

1 2−∑= 






ρ
 is the temperature. The norma-

lized discrete equilibrium state hf  is compared with the nor-
malized Maxwellian f and calculated the error 

1
- herr ff=  

and the moments, temperature as shown in the table 1.1.   
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Table 1.1:  In varying temperatures Discrete equilibria and 
Maxwellian are on a 4-layer grid. 
 
Here three interesting cases of three different temperatures 
with zero bulk-velocities are presented. 
1. In the first case, for 25.0=µ  the calculated temperture is 

8293.0=T . The main part of the configuration is centered at 
the origin with a small radius and a small part of the mass 
occurred on the grid. That is the resolution of the grid is too 
low to present such low temperature and this causes a notice-
able 5% error. 
2. This is a good situation because the main part of the mass 
of the function f  lies inside of the domain. In this case it oc-
curs very little error for 55.0=µ  in which the calculated tem-
perature 6759.1=T . 
3. Here the grid is not large enough to present such high 
temperature 0488.11=T  for a given 95.0=µ  and a significant 
fraction of the mass of the function f  is cut down the boun-
dary which causes 20% error.  

Thus to avoid this error it requires to further extension of 
the 4-layer grid model. It is thus seen that a larger model is 
needed to restrict the error to a reasonable range for high tem-
perature otherwise a noticeable error due to boundary effect. 
 

Let us now observe the effect of varying bulk-velocity for 
a constant temperature. For this we choose 3.0=µ  in a 6-layer 
hexagonal grid (of 420 grid points) and calculate the equili-
brium solution for three different cases of bulk veloci-
ties )0 ,3.0(   ),0 ,0(),( =yx vv and )5477.0 ,3.0( . For these val-

ues of the parameters we compute the moments, temperature 
together with the heat flux components.  

       ))v()v)((v.(
2

1 22
yyixxixxi

i
i

h
x vvvfq −+−−∑=                              

      ))v()v)((v.(
2

1 22
yyixxiyyi

i
i

h
y vvvfq −+−−∑=  

and the stress tensor components 
                    2)v.( xxi

i
i

h
xx vfp −∑=  

                   )v)(v.( yyixxi
i

i
h
yx

h
xy vvfpp −−∑==  

                   2)v.( yyi
i

i
h
yy vfp −∑=  

The table 1.2 illustrate three different situations.  

 
Table 1.2:  Discrete equilibria in varying bulk-velocity on a 6-
layer grid 
 
Here three interesting cases of three different bulk-velocities 
are presented. 
 
1. In the first case both the components of bulk-velocity are 
zero and ε∈hf  is symmetric about both the axes. In the 
stress tensor, both the principal diagonal elements are equal to 
the calculated temperature 9753.0=T  and both the off di-
agonal elements are zero. Here we observe vanishing heat flux 
components. As the main part of the mass lies inside the do-
main we obtain a very little error in this case. 
2. In the second case, we impose positive x -component 
bulk-velocity and zero y -component bulk-velocity. In this 
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situation ε∈hf  loses its symmetry property about the x -axis 
and we obtain non-zero x -component heat flux. However, the 
remaining symmetry property in the direction of  yv  still 

guarantees the diagonal form of the stress tensor hp . It is seen 
that the principal diagonal elements of the stress tensor are not 
equal anymore. On the other hand, temperature remains al-
most the same as in the first case which means nonzero bulk-
velocity dose not influence the temperature. In this case we 
have more error than the first case which is due to a little 
boundary effect and this cause a little change of the tempera-
ture. 
3. In the third case, both the components of the bulk-
velocity are positive and this  causes the non symmetric 
nature of ε∈hf  about both the co-ordinate axes of the grid. 

The diagonal form of the stress tensor hp  is violated and both 

the components of hq  are negative. The temperature changes 
are little which is consistent with the little error due the boun-
dary effect. 

In all the three cases the main part of the configuration is 
symmetric about the centers of three different basic hexagon 
of the grid. 
Now, Fig.1.3, shows the calculated temperature for corres-
ponding to values of ]9.0  ,1.0[∈µ . 

 
Fig: 1.3 Temperature T depends on Kinetic Energy .µ  

 
It is clearly seen in the Fig.1.3 that temperature depends upon 
the values of the kinetic energy .µ which is expected.  
 
Fig.1.4 shows the calculated bulk-velocity for given 

]9.0  ,1.0[∈µ  at the three different choice of ) ,( 20 ++ κκ . 
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Fig: 1.4 Bulk-velocity depends on )(µT  and s'κ  

As expected, it is clearly seen in the Fig.1.4 that the modulus of 
the bulk-velocity v  depends upon the choice of temperature 

as well as the values of the parameters ++ 20  ,κκ . 
 
6 CONCLUSION 

The equilibria f of the Boltzmann equation can be expressed 
in terms of four parameters characterizing mass, ),( yx -
momenta and kinetic energy. The computation of discrete 
equilibria of the Boltzmann equation is effected by varying 
temperature and bulk-velocity. The temperature depends on 
the parameter µ , characterizing kinetic energy. The bulk-
velocity depends on the parameter s'κ , characterizing 

),( yx momenta and µ  as well. 
The discrete equilibria are useful for the error estimation of the 
discrete model Boltzmann equation. Restricting the error in a 
given tolerance one can investigates efficient numerical 
scheme to solve the space inhomogeneous Boltzmann equa-
tion which we may investigate in our future work. 
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